Informative Views and Active Recognition

نویسندگان

  • Tal Arbel
  • Frank P. Ferrie
  • Peter Whaite
چکیده

In this paper we introduce a method for distinguishing between informative and uninformative viewpoints as they pertain to an active observer seeking to identify an object in a known environment. The method is based on a generalized inverse theory using a probabilistic framework where assertions are represented by conditional probability density functions. Consequently, the method also permits the assessment of the beliefs associated with a set of assertions based on data acquired from a particular viewpoint. The importance of this result is that it provides a basis by which an external agent can assess the quality of the information from a particular viewpoint, and make informed decisions as to what action to take using the data at hand. What is important about the method is that it provides a formal recipe for representing and combining all prior knowledge in order to obtain the required density functions (which we refer to as belief distributions). To illustrate the theory we show how the characteristics of belief distributions can be exploited in a model-based recognition problem, where the task is to identify an unknown model from a database of known objects on the basis of parameter estimates. This leads to a sequential recognition strategy in which evidence is accumulated over successive viewpoints (at the level of the belief distribution) until a de nitive assertion can be made. Experimental results are presented showing how the resulting algorithms can be used to distinguish between informative and uninformative viewpoints, rank a sequence of images on the basis of their information (e.g. to generate a set of characteristic views), and sequentially identify an unknown object.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Classification: Theory and Application to Underwater Inspection

We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze ...

متن کامل

Optimising Selective Sampling for Bootstrapping Named Entity Recognition

Training a statistical named entity recognition system in a new domain requires costly manual annotation of large quantities of in-domain data. Active learning promises to reduce the annotation cost by selecting only highly informative data points. This paper is concerned with a real active learning experiment to bootstrap a named entity recognition system for a new domain of radio astronomical...

متن کامل

Informative Views and Sequential Recognition

In this paper we introduce a method for distinguishing between informative and uninformative viewpoints as they pertain to an active observer seeking to identify an object in a known environment. The method is based on a generalized inverse theory using a probabilistic framework where assertions are represented by conditional probability density functions. Consequently, the method also permits ...

متن کامل

Patch-based analysis of visual speech from multiple views

Obtaining a robust feature representation of visual speech is of crucial importance in the design of audio-visual automatic speech recognition systems. In the literature, when visual appearance based features are employed for this purpose, they are typically extracted using a “holistic” approach. Namely, a transformation of the pixel values of the entire region-of-interest (ROI) is obtained, wi...

متن کامل

Using Active Learning to Allow Activity Recognition on a Large Scale

Automated activity recognition systems that use probabilistic models require labeled data sets in training phase for learning the model parameters. The parameters are different for every person and every environment. Therefore, for every person or environment, training is needed to be performed from scratch. Obtaining labeled data requires much effort therefore poses challenges on the large sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994